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The design of input and output matching networks for transistor microwave
frequency amplifiers has been optimized by the use of an efficient computer program,
Power amplifiers capable of 2,5 watts peak power output with a 400 MHz bandwidth
at 2,25 GHz have been fabricated. The matching network problem was reduced to an
equivalent non-linear programming problem by considering the filter elements as co~
ordinates in an N-dimensional vector space, The optimal solution point in the vector
space was found by the use of a '"pattern search" routine which utilized randomly
chosen orthogonal transformations of the search pattern to minimize an objective
function. In this case, a suitable objective function was chosen to be the area under
the curve of reflection coefficient versus frequency for the filter input. By use of
multiple data input as many as six designs have been achieved in less than nine minutes
on the 7044 computer.

Construction of transistor amplifiers at microwave frequencies involves the
design of suitable matching networks, Power amplifiers are further complicated by
non-linear operation to give efficiency as well as gain. The natural step to integrated
microwave transistor amplifiers imposes a minimal size constraint upon the matching
network design. Additional constraints such as transistor biasing networks and coup~
ling capacitor dimensions must also be considered, The characterization techniques
used to obtain the transistor input and output admittances have been previously
described.l’/ The admittances generally cannot be ascribed to a simple equivalent
circuit. The technique described in this paper allows networks, consisting of lossless
transmission lines, to be designed to match the measured admittances over a broad
range of frequencies. An extension of the technique to lumped parameter elements
also has been made.

We have characterized either port of a transistor as an admittance for the pur-
poses of this discussion. This admittance is generally a function of both power level
and frequency; with the power level requirements chosen, the admittance is given in
terms of frequency alone. By least squares curve fitting an admittance vs frequency
function may be empirically described. In general, two such admittance functions are
given to be matched to one another by the use of a suitable network. The case described
below utilizes lossless transmission line elements to construct an admittance matching
network over a broad band of frequencies.

The lossless line elements used are series sections, open stubs, and shorted
stubs. Both the characteristic impedance and the individual line length are varied in
the optimization procedure. A configuration of N elements thus describes the co-
ordinates of a 2N vector space. By using one admittance as a load, the reflection
coefficient between the transformed load admittance and the second (source) admit-
tance may be calculated. Use of this function follows Fano.2/ For a point in the vector
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space the reflection coefficient may be calculated as a function of frequency over the
range of interest. Integrating the resulting reflection coefficient function from over this
range results in an objective function to be minimized -over the vector space.

A pattern search routine called "SPIDER'" has been utilized to efficiently minimize
the objective function, This routine avoids many local minima which exist in the ob-
jective function and seeks a global optimum. From the initial point a successful direc-
tion is determined by searching a fixed distance from the base point in a number of
random orthogonal directions. If a successful direction is determined, a series of
accelerating moves are made in this direction by a speed factor. If no successful
direction is found with the current incremental values, then the increments are reduced.
The exploratory moves are repeated with new increment values. Increments are suc-
cessively reduced until the lower limit on the first variable is undercut which initiates
an exit routine, The maximum number of iterations may be specified to cause a sep-
arate (possible non-optimal) exit, Figures 1 and 2 diagram the search routine pro-
gram.iﬁéﬁ/

At the present time the network configuration is at the discretion of the designer;
an initial point must also be given to the program. Boundary values for the transmis-
sion line elements may also be specified by the designer. This approach has been
tested by designing transistor microwave power amplifiers. Table I gives a sample
configuration, starting values, and final values for a network matching the output
impedance of an amplifier to a 50 Q load. Figure 3 shows a computer plot of the
reflection coefficient vs frequency curve achieved by the program. Figure 4 isa
photograph of a 2,5 W peak power amplifier designed using the computer program;
Figure 5 gives the frequency performance of the amplifier. The matching networks
operate satisfactorily within the accuracy of the admittance measurements and the
knowledge of the transmission line design parameters.

Table I. Network Matching Output Impedance of an Amplifier to a 50  Load

Initial Value Final Value
Element Yo 1at 2.4 GHz Yo 1 at 2.4 GHz
No. (mmbhos) (degrees) (mmhos) (degrees)
1 Series 15 45 12 14
2 Open Stub 15 45 20 62
3 Series 15 45 13 18
4 Shorted Stub 15 45 28 20
5 Series 15 45 23 15
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Figure 3. Reflection Coefficient vs Frequency
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Figure 4. Peak Power Amplifier (2.5 W)
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Figure 5. Frequency Performance of Amplifier
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